Skip to content

Taxonomy Distribution Report

Overview

  • Total Concepts: 200
  • Number of Taxonomies: 14
  • Average Concepts per Taxonomy: 14.3

Distribution Summary

Category TaxonomyID Count Percentage Status
Neural Networks NN 37 18.5%
Foundation Concepts FOUND 31 15.5%
Convolutional Networks CNN 20 10.0%
Evaluation Metrics EVAL 19 9.5%
Support Vector Machines SVM 16 8.0%
Optimization OPT 16 8.0%
Decision Trees TREE 12 6.0%
Clustering CLUST 12 6.0%
K-Nearest Neighbors KNN 11 5.5%
Logistic Regression LOGREG 9 4.5%
Data Preprocessing PREP 7 3.5%
Regularization REG 5 2.5% ℹ️ Under
Transfer Learning TL 4 2.0% ℹ️ Under
Miscellaneous MISC 1 0.5% ℹ️ Under

Visual Distribution

NN     █████████  37 ( 18.5%)
FOUND  ███████  31 ( 15.5%)
CNN    █████  20 ( 10.0%)
EVAL   ████  19 (  9.5%)
SVM    ████  16 (  8.0%)
OPT    ████  16 (  8.0%)
TREE   ███  12 (  6.0%)
CLUST  ███  12 (  6.0%)
KNN    ██  11 (  5.5%)
LOGREG ██   9 (  4.5%)
PREP   █   7 (  3.5%)
REG    █   5 (  2.5%)
TL     █   4 (  2.0%)
MISC      1 (  0.5%)

Balance Analysis

✅ No Over-Represented Categories

All categories are under the 30% threshold. Good balance!

ℹ️ Under-Represented Categories (<3%)

  • Regularization (REG): 5 concepts (2.5%)
  • Note: Small categories are acceptable for specialized topics
  • Transfer Learning (TL): 4 concepts (2.0%)
  • Note: Small categories are acceptable for specialized topics
  • Miscellaneous (MISC): 1 concepts (0.5%)
  • Note: Small categories are acceptable for specialized topics

Category Details

Neural Networks (NN)

Count: 37 concepts (18.5%)

Concepts:

    1. Neural Network
    1. Artificial Neuron
    1. Perceptron
    1. Activation Function
    1. ReLU
    1. Tanh
    1. Leaky ReLU
    1. Weights
    1. Bias
    1. Forward Propagation
    1. Backpropagation
    1. Gradient Descent
    1. Stochastic Gradient Descent
    1. Mini-Batch Gradient Descent
    1. Learning Rate
  • ...and 22 more

Foundation Concepts (FOUND)

Count: 31 concepts (15.5%)

Concepts:

    1. Machine Learning
    1. Supervised Learning
    1. Unsupervised Learning
    1. Classification
    1. Regression
    1. Training Data
    1. Test Data
    1. Validation Data
    1. Feature
    1. Label
    1. Instance
    1. Feature Vector
    1. Model
    1. Algorithm
    1. Hyperparameter
  • ...and 16 more

Convolutional Networks (CNN)

Count: 20 concepts (10.0%)

Concepts:

    1. Convolutional Neural Network
    1. Convolution Operation
    1. Filter
    1. Stride
    1. Padding
    1. Valid Padding
    1. Same Padding
    1. Receptive Field
    1. Max Pooling
    1. Average Pooling
    1. Spatial Hierarchies
    1. Translation Invariance
    1. Local Connectivity
    1. Weight Sharing
    1. CNN Architecture
  • ...and 5 more

Evaluation Metrics (EVAL)

Count: 19 concepts (9.5%)

Concepts:

    1. Training Error
    1. Test Error
    1. Generalization
    1. Stratified Sampling
    1. Holdout Method
    1. Confusion Matrix
    1. True Positive
    1. False Positive
    1. True Negative
    1. False Negative
    1. Accuracy
    1. Precision
    1. Recall
    1. F1 Score
    1. ROC Curve
  • ...and 4 more

Support Vector Machines (SVM)

Count: 16 concepts (8.0%)

Concepts:

    1. Support Vector Machine
    1. Hyperplane
    1. Margin
    1. Support Vectors
    1. Margin Maximization
    1. Hard Margin SVM
    1. Soft Margin SVM
    1. Slack Variables
    1. Kernel Trick
    1. Linear Kernel
    1. Polynomial Kernel
    1. Radial Basis Function
    1. Gaussian Kernel
    1. Dual Formulation
    1. Primal Formulation
  • ...and 1 more

Optimization (OPT)

Count: 16 concepts (8.0%)

Concepts:

    1. Computational Complexity
    1. Time Complexity
    1. Space Complexity
    1. Scalability
    1. Online Learning
    1. Optimizer
    1. Adam Optimizer
    1. RMSprop
    1. Momentum
    1. Nesterov Momentum
    1. Gradient Clipping
    1. Dropout
    1. Early Stopping
    1. Grid Search
    1. Random Search
  • ...and 1 more

Decision Trees (TREE)

Count: 12 concepts (6.0%)

Concepts:

    1. Decision Tree
    1. Tree Node
    1. Leaf Node
    1. Splitting Criterion
    1. Entropy
    1. Information Gain
    1. Gini Impurity
    1. Pruning
    1. Overfitting
    1. Underfitting
    1. Tree Depth
    1. Cross-Entropy Loss

Clustering (CLUST)

Count: 12 concepts (6.0%)

Concepts:

    1. K-Means Clustering
    1. Centroid
    1. Cluster Assignment
    1. Cluster Update
    1. K-Means Initialization
    1. Random Initialization
    1. K-Means++ Initialization
    1. Elbow Method
    1. Silhouette Score
    1. Within-Cluster Variance
    1. Convergence Criteria
    1. Inertia

K-Nearest Neighbors (KNN)

Count: 11 concepts (5.5%)

Concepts:

    1. K-Nearest Neighbors
    1. Distance Metric
    1. Euclidean Distance
    1. Manhattan Distance
    1. K Selection
    1. Decision Boundary
    1. Voronoi Diagram
    1. Curse of Dimensionality
    1. KNN for Classification
    1. KNN for Regression
    1. Lazy Learning

Logistic Regression (LOGREG)

Count: 9 concepts (4.5%)

Concepts:

    1. Sigmoid Function
    1. Log-Loss
    1. Binary Classification
    1. Multiclass Classification
    1. Maximum Likelihood
    1. One-vs-All
    1. One-vs-One
    1. Softmax Function
    1. Sigmoid Activation

Data Preprocessing (PREP)

Count: 7 concepts (3.5%)

Concepts:

    1. Normalization
    1. Standardization
    1. Min-Max Scaling
    1. Z-Score Normalization
    1. One-Hot Encoding
    1. Dimensionality Reduction
    1. Data Augmentation

Regularization (REG)

Count: 5 concepts (2.5%)

Concepts:

    1. Regularization
    1. L1 Regularization
    1. L2 Regularization
    1. Ridge Regression
    1. Lasso Regression

Transfer Learning (TL)

Count: 4 concepts (2.0%)

Concepts:

    1. Transfer Learning
    1. Fine-Tuning
    1. Domain Adaptation
    1. ImageNet

Miscellaneous (MISC)

Count: 1 concepts (0.5%)

Concepts:

    1. Logistic Regression

Recommendations

  • Good balance: Categories are reasonably distributed (spread: 18.0%)
  • MISC category minimal: Good categorization specificity

Educational Use Recommendations

  • Use taxonomy categories for color-coding in graph visualizations
  • Design curriculum modules based on taxonomy groupings
  • Create filtered views for focused learning paths
  • Use categories for assessment organization
  • Enable navigation by topic area in interactive tools

Report generated by learning-graph-reports/taxonomy_distribution.py