Categorical Encoding Explorer¶
Description¶
An interactive visualization comparing label encoding and one-hot encoding for categorical variables.
Learning Objectives¶
- Understand how label encoding assigns integer values to categories
- Learn how one-hot encoding creates binary columns for each category
- Recognize the difference between nominal and ordinal variables
- Identify when to use each encoding method
How to Use¶
- Select Example Dataset: Choose from Default, Iris Species, or Car Types
- Toggle drop_first: See how the parameter affects one-hot encoding dimensionality
- Add Rows: Click to add more sample data rows
- Compare Encodings: Examine the three tables showing original data, label encoding, and one-hot encoding
Key Concepts¶
Label Encoding¶
- Assigns integers to categories (0, 1, 2, ...)
- Memory-efficient (single column)
- Suitable for ordinal variables and target labels
- Warning: Introduces artificial ordering for nominal variables
One-Hot Encoding¶
- Creates binary column for each category
- No artificial ordering imposed
- Required for nominal variables in most algorithms
- Use
drop_first=Trueto avoid multicollinearity
Interactive Features¶
- Multiple Example Datasets: See encoding on different data types
- Live Comparison: View all three representations simultaneously
- Dimensionality Tracking: See how column count changes
- Pros/Cons Analysis: Understand trade-offs for each method